Skip to main content

14 posts tagged with "schema"

View All Tags

Manage database schemas with Terraform in plain SQL

· 9 min read
Rotem Tamir
Building Atlas
TL;DR

You can now use plain SQL to define the desired state of your database schema.

See an example

Earlier today, we released v0.5.0 of the Atlas Terraform Provider. This release includes two changes that, in my opinion, are a great improvement to the experience of working with the Atlas Provider.

In this post, I will discuss these two changes and how they can help you to manage your database schemas with Terraform:

  • Support for the docker:// driver for dev-databases.
  • Support for defining the desired state of your database schema in plain SQL (and any other schema loader supported by Atlas).

Improving the dev-database experience with the docker:// driver

Atlas relies on a connection to an empty database which it can use to perform various calculations and operations. This database is called the "dev-database", and it allows Atlas to do things like validate the correctness of user-provided code as well as normalize user-input to the way the database actually sees it.

In previous versions of the Atlas Provider, the dev-database needed to be provided by the user. This was a bit cumbersome, as the user needed to spin up a database (usually by running a local Docker container), and then provide the connection string to it in the dev_url field of the atlas_schema resource.

To improve this experience, we added support for the docker:// driver, which allows the user to only provide the database engine and version, and Atlas will spin up an ephemeral container with the correct database engine and version. In addition, starting this version, users may define the dev_url on the provider scope. For example:

provider "atlas" {
dev_url = "docker://mysql/8/myapp"
}

Defining the desired state of the database schema in plain SQL

In earlier versions of the Atlas Provider, the atlas_schema resource required the user to provide an Atlas HCL file which describes the desired state of the database schema. Many users found this syntax, which resembles Terraform's own, to be clean and concise. However, others disliked it and asked for a way to define the desired state in plain SQL.

To support this use-case, and many others, we have announced support for "schema loaders" - components that can be used to load the desired schema from many kinds of sources (such as plain SQL, an existing database, or the data-model of an ORM). To use this capability, users may use the atlas_schema data source, which accepts a url field that points to the desired schema. The scheme of this URL determines which schema loader will be used, for instance:

  • file://schema.sql - loads the schema from a local SQL file.
  • mysql://root:pass@localhost:3306/myapp - loads the schema from an existing MySQL database.
  • ent://service/ent/schema - loads the schema from the schema of an Ent project.

Managing database schemas in plain SQL using Terraform

info

You can find the final code for this example here.

In the following example, we will show how you can use Terraform and the Atlas provider to manage a MySQL database schema in plain SQL.

Let's start by creating a Terraform file named main.tf installing the Atlas Terraform provider:

terraform {
required_providers {
atlas = {
source = "ariga/atlas"
version = "0.5.0"
}
}
}

In addition to installing the Atlas provider, we will also spin up a local MySQL database using Docker which will represent our target database that we will manage with Terraform. In a real-world scenario, you would probably use a managed database service such as AWS RDS or Google Cloud SQL, but for the purpose of brevity, a local database will suffice. Run:

docker run -d --name mysql -p 3306:3306 -e MYSQL_ROOT_PASSWORD=pass -e MYSQL_DATABASE=myapp mysql:8

Now that we have a database to manage, we can define the desired state of the database schema. Add a file named "schema.sql" with the following content:

create table users (
id int not null auto_increment primary key,
name varchar(255) not null
);

Next, we will define an atlas_schema data source that will load the schema from the schema.sql file:

data "atlas_schema" "sql" {
src = "file://${path.module}/schema.sql"
}

Finally, we will define an atlas_schema resource that will manage the schema in the target database. In addition, we will configure the Atlas provider to use the docker:// driver to spin up a temporary database container:

provider "atlas" {
dev_url = "docker://mysql/8/myapp"
}

resource "atlas_schema" "mysql" {
url = "mysql://root:pass@localhost:3306/myapp"
hcl = data.atlas_schema.sql.hcl
}

Now that we have defined our Terraform configuration, we can run terraform init to install the required providers:

terraform init

This should output something like:

Initializing provider plugins...
- Finding ariga/atlas versions matching "0.4.7"...
- Installing ariga/atlas v0.5.0...
- Installed ariga/atlas v0.5.0 (signed by a HashiCorp partner, key ID 45441FCEAAC3770C)

# ...

Terraform has been successfully initialized!

Finally, we can run terraform apply to create the database schema:

terraform apply

Terraform will print the following plan:

data.atlas_schema.sql: Reading...
data.atlas_schema.sql: Read complete after 4s [id=qnUvTyupgQzivof5LYWDOQ]

Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following
symbols:
+ create

Terraform will perform the following actions:

# atlas_schema.myapp will be created
+ resource "atlas_schema" "myapp" {
+ hcl = <<-EOT
table "hello" {
schema = schema.myapp
column "world" {
null = true
type = text
}
column "thoughts" {
null = true
type = varchar(100)
}
}
schema "myapp" {
charset = "utf8mb4"
collate = "utf8mb4_0900_ai_ci"
}
EOT
+ id = (known after apply)
+ url = (sensitive value)
}

Plan: 1 to add, 0 to change, 0 to destroy.

│ Warning: Atlas Plan

│ with atlas_schema.myapp,
│ on main.tf line 18, in resource "atlas_schema" "myapp":
│ 18: resource "atlas_schema" "myapp" {

│ The following SQL statements will be executed:


│ CREATE TABLE `myapp`.`hello` (`world` text NULL, `thoughts` varchar(100) NULL) CHARSET utf8mb4 COLLATE utf8mb4_0900_ai_ci



Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

Notice that the plan shows the SQL statements that will be executed to create the database schema as well as our loaded schema in its HCL representation - this was done by the schema loader that was used to load the schema from the schema.sql file.

If you are happy with the plan, type yes and press enter to apply the changes:

Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value: yes

atlas_schema.myapp: Modifying... [id=mysql:///myapp]
atlas_schema.myapp: Modifications complete after 4s [id=mysql:///myapp]

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Hooray! We have successfully created a database schema using Terraform and the Atlas provider.

Terraform's true power comes from its declarative nature - we feed it a desired state and it will make sure that the actual state matches the desired state. Atlas is a perfect match for this paradigm. Let's see what happens if we change the schema in the schema.sql file and run terraform apply again:

Update the contents of schema.sql to the following:

create table `groups` (
id int not null auto_increment primary key,
name varchar(255) not null
);

create table `users` (
id int not null auto_increment primary key,
name varchar(255) not null,
group_id int not null,
foreign key (group_id) references `groups` (id)
);

Re-apply the changes:

terraform apply

Observe that our plan includes the addition of the groups table as well as the foreign key constraint on the users table:

data.atlas_schema.sql: Reading...
data.atlas_schema.sql: Read complete after 4s [id=Qhci62i6CFYRQ2CmUOjMeA]
atlas_schema.myapp: Refreshing state... [id=mysql:///myapp]

Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following
symbols:
~ update in-place

Terraform will perform the following actions:

# atlas_schema.myapp will be updated in-place
~ resource "atlas_schema" "myapp" {
~ hcl = <<-EOT
+ table "groups" {
+ schema = schema.myapp
+ column "id" {
+ null = false
+ type = int
+ auto_increment = true
+ }
+ column "name" {
+ null = false
+ type = varchar(255)
+ }
+ primary_key {
+ columns = [column.id]
+ }
+ }
table "users" {
schema = schema.myapp
column "id" {
null = false
type = int
auto_increment = true
}
column "name" {
null = false
type = varchar(255)
}
+ column "group_id" {
+ null = false
+ type = int
+ }
primary_key {
columns = [column.id]
}
+ foreign_key "users_ibfk_1" {
+ columns = [column.group_id]
+ ref_columns = [table.groups.column.id]
+ on_update = NO_ACTION
+ on_delete = NO_ACTION
+ }
+ index "group_id" {
+ columns = [column.group_id]
+ }
}
schema "myapp" {
charset = "utf8mb4"
collate = "utf8mb4_0900_ai_ci"
}
EOT
id = "mysql:///myapp"
# (1 unchanged attribute hidden)
}

Plan: 0 to add, 1 to change, 0 to destroy.

│ Warning: Atlas Plan

│ with atlas_schema.myapp,
│ on main.tf line 18, in resource "atlas_schema" "myapp":
│ 18: resource "atlas_schema" "myapp" {

│ The following SQL statements will be executed:


│ CREATE TABLE `myapp`.`groups` (`id` int NOT NULL AUTO_INCREMENT, `name` varchar(255) NOT NULL, PRIMARY KEY (`id`)) CHARSET
│ utf8mb4 COLLATE utf8mb4_0900_ai_ci
│ ALTER TABLE `myapp`.`users` ADD COLUMN `group_id` int NOT NULL, ADD INDEX `group_id` (`group_id`), ADD CONSTRAINT
│ `users_ibfk_1` FOREIGN KEY (`group_id`) REFERENCES `myapp`.`groups` (`id`) ON UPDATE NO ACTION ON DELETE NO ACTION



Do you want to perform these actions?
Terraform will perform the actions described above.
Only 'yes' will be accepted to approve.

Enter a value:

After typing yes and pressing enter, Terraform will apply the changes, bringing the actual state of the database schema in line with the desired state:

atlas_schema.myapp: Modifying... [id=mysql:///myapp]
atlas_schema.myapp: Modifications complete after 4s [id=mysql:///myapp]

Apply complete! Resources: 0 added, 1 changed, 0 destroyed.

Conclusion

In this tutorial, we have seen how to use Terraform to manage the schema of a MySQL database using the Atlas provider with plain SQL. Using this workflow, teams can bridge the gap between their database schema management flows and their Terraform workflows, allowing for simpler and more reliable software delivery.

How can we make Atlas better?

We would love to hear from you on our Discord server ❤️.

Troubleshooting schema migration issues with Atlas

· 9 min read
Rotem Tamir
Building Atlas

Database schema migrations are an essential part of software development, allowing teams to evolve and refine their application's data model over time. However, with schema changes, it's not always smooth sailing, and migration failures can be disruptive and challenging to resolve.

As much as we'd like to believe that our schema migrations will be executed flawlessly, the reality is that things can and do go wrong. Whether it's due to human error, unforeseen complications, or technical constraints, migration failures can be a significant source of frustration for development teams. Anticipating and preparing for these issues is essential to minimize their impact on your project.

In this blog post, we'll explore the common causes of migration failures and demonstrate how Atlas can help you quickly recover from such failures and easily get back on track.

Atlas: Optimized for MTTR

MTTR (mean-time-to-recovery) is a widely accepted metric for measuring the performance of teams delivering software. MTTR measures the mean time it takes to restore service when a production issue occurs. In the context of schema migrations, this would mean measuring how long it takes a team to detect, triage and resolve failures of schema migrations.

Contrary to existing tools, Atlas was designed with failure in mind and comes with some useful features to help your team get out of the mud if (and when) a schema migration fails. By utilizing these features, your team can greatly reduce MTTR for schema change related failures.

Why do migrations fail?

Let's begin our discussion of troubleshooting schema migration failures by mentioning the common causes for migration failures.

  1. Syntax errors - A surprisingly common cause for migration failures is syntax errors in the migration script: the migration tool tries to execute a statement and the database rejects it, causing the migration to fail. For example, adding an unnecessary comma at the end of a list:
mysql> create table users (   id int,   name varchar(255), );

ERROR 1064 (42000): You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near ')' at line 1
  1. Schema dependent changes - Incorrect assumptions about the current state of the target database can lead to failed migrations when those assumptions are not met. For example, trying to create a table that was already created:
mysql> create table users (   id int,   name varchar(255) );
ERROR 1050 (42S01): Table 'users' already exists
  1. Data-dependent changes - If migrations manipulate data or modify constraints, the operation may fail depending on existing data in the target database. For example, adding a NOT NULL constraint to a column may fail if that column contains null values:
mysql> alter table users modify bio varchar(100) not null;
ERROR 1138 (22004): Invalid use of NULL value
  1. Lost connection - In some cases, and depending on the state of the target database and network connectivity, the client executing the migration commands against the database may lose the connection to the database, causing the migration to fail:
mysql> create table t1 (c int);
No connection. Trying to reconnect...
ERROR 2003 (HY000): Can't connect to MySQL server on '0.0.0.0:3306' (61)
ERROR:
Can't connect to the server

Troubleshooting failures with Atlas

In the next section, we review the capabilities that Atlas provides operators to troubleshoot and resolve migration failures:

  • Status observability - how to understand the current state of the system after a failure.
  • Statement level granularity - how to recover from partial migration failures.
  • Declarative roll-forward - how to use Atlas to automatically create a recovery plan from a failure.

Status observability

The first step to solving any failure is being able to triage the issue at hand. To assist operators in diagnosing the current status of a target database, Atlas provides the migrate status command which can be used to understand the current situation. For instance, suppose we tried to run the following migration which contains a drop table statement for a non-existing table:

create table users (
id int,
name varchar(255)
);

drop table non_existing;

The migration will fail with the following error:

Error 1051 (42S02): Unknown table 'test.non_existing'

In many cases, the migration will not be applied from our workstation, so we may not have access to the execution logs. To check the migration status, we can run the migrate status command:

atlas migrate status -u mysql://root:pass@/test

Atlas will print:

Migration Status: PENDING
-- Current Version: 20230409114917 (1 statements applied)
-- Next Version: 20230409114917 (1 statements left)
-- Executed Files: 2 (last one partially)
-- Pending Files: 1

Last migration attempt had errors:
-- SQL: drop table non_existing;
-- ERROR: Error 1051 (42S02): Unknown table 'test.non_existing'

Observe that Atlas prints out some useful information:

  • Migration Status: PENDING - There are pending migrations.
  • -- Executed Files: 2 (last one partially) - the last file was partially applied.
  • The last migration failed with an error: ERROR: Error 1051 (42S02): Unknown table 'test.non_existing'

Statement-level granularity

As we saw in the example above, in cases where migrations partially fail (only some statements succeed) our database schema will be in a limbo state of sorts, it's neither in the previous nor the next version. To keep implementations simple, in the past many migration tools have opted to treat migration files as opaque blobs, meaning they cannot provide any assistance in cases of partial failures.

Atlas, on the other hand, parses the migration files prior to executing them and can therefore provide information about failures on the statement (rather than the file) level. This is great for observability, but it is even more meaningful when trying to resolve issues.

Consider a situation similar to the one we presented above, where a migration fails halfway because of a constraint violation:

CREATE TABLE biographies (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
bio TEXT,
FOREIGN KEY (user_id) REFERENCES users(id)
);

ALTER TABLE users modify bio varchar(100) not null;

In cases where the users.bio column already contains null values, this migration will partially fail:

  -- migrating version 20230409123337
-> CREATE TABLE biographies (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
bio TEXT,
FOREIGN KEY (user_id) REFERENCES users(id)
);
-> alter table users modify bio varchar(100) not null;

Error: Error 1138 (22004): Invalid use of NULL value

This can be solved by backfilling the table with non-null values in the relevant column. To do this, we can update our migration script to contain this UPDATE statement:

CREATE TABLE biographies (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
bio TEXT,
FOREIGN KEY (user_id) REFERENCES users(id)
);

update users set bio='' where bio is null;

alter table users modify bio varchar(100) not null;

Here's the good part: because Atlas operates at the statement level and remembers that we've already successfully applied the first CREATE TABLE statement, it will resume from where it stopped. If we run:

atlas migrate apply -u mysql://root:pass@/test

Atlas runs to completion:

Migrating to version 20230409123337 from 20230409123337 (1 migrations in total):

-- migrating version 20230409123337
-> update users set bio='' where bio is null;
-> alter table users modify bio varchar(100) not null;
-- ok (48.440861ms)

-------------------------
-- 56.051791ms
-- 1 migrations
-- 2 sql statements

Declarative roll-forward

One of the things people experienced with existing tools immediately notice when they start working with Atlas is the absence of down migrations. Many migration tools expect users to plan a down migration parallel to every migration, which contains the statements needed to roll back the schema changes for a version. In theory, this is done to allow users to seamlessly return to a previous version in case things go wrong with the new one.

Our decision to omit down migrations from Atlas and deserves its own lengthy discussion, but limited to the examples we just showed it is easy to demonstrate that attempting to execute down migrations in cases of partial failures may fail themselves, since they rely on the database being at the state where all statements executed successfully.

Instead of down migrations, Atlas provides an alternative strategy for reverting to a previous version. As you may know, one of Atlas's core features is its support for declarative migrations - the ability to automatically plan schema changes from the current state of a database to some desired state (similar to Terraform, but for databases).

Suppose we want to revert the database to a known version. This can happen in cases where the database was somehow manually modified in a way that's preventing us from making progress, or if we simply want to revert to a previous version. Using Atlas's schema apply, we can automatically plan this change:

atlas schema apply \
--url "mysql://root:pass@localhost:3306/example" \
--to "file://migrations?version=targetVersion" \
--dev-url "docker://mysql/8/example" \
--exclude "atlas_schema_revisions"

Atlas plans the change for us:

-- Planned Changes:
-- Drop "biographies" table
DROP TABLE `biographies`;
-- Modify "users" table
ALTER TABLE `users` MODIFY COLUMN `bio` varchar(100) NULL;
Apply

Let's unpack this command:

  • url - is the URL of the target database that we want to modify.
  • to - describes the desired state, in this case the migration directory at file://migrations at version targetVersion - omitting this query parameter will set the desired state at the most recent revision.
  • dev-url - Atlas requires a connection to an empty dev-database, which it uses to normalize the desired schema. Using the docker:// URL scheme tells Atlas to spin up and use a fresh Docker container for this purpose.
  • exclude - tells Atlas to ignore atlas_schema_revision which is a metadata table maintained by Atlas and not described in the migration directory. Adding this argument prevents Atlas from accidentally producing a plan that drops this table.

Wrapping up

This blog post discussed the common causes of database schema migration failures and demonstrated how Atlas is equipped to handle them. Atlas offers features such as status observability, statement-level granularity, and declarative roll-forward capabilities, which enable development teams to efficiently recover from migration failures, reduce MTTR, and minimize disruption to their services.

How can we make Atlas better?

We would love to hear from you on our Discord server ❤️.

New Analyzers and Cloud Linting Configuration

· 5 min read
Jannik Clausen
Building Atlas

It's been only two weeks since the release of v0.10.0, but we are already back with more exciting features we want to share with you. Besides some more improvements and bug fixes, we added two new SQL analyzers to Atlas and the capability to have Atlas Cloud pick up a linting configuration file from your repository.

Concurrent Index Policy (Postgres)

One of the Analyzers we added in this release is the Concurrent Index Policy Analyzer for Postgres. When creating or dropping indexes Postgres will lock the table against writes. Depending on the amount of data this lock might be in place longer than just a few moments, up to several hours. Therefore, Postgres provides the CONCURRENTLY option which will cause the index to be built without keeping a lock for the whole time it is built. While consuming more resources, this option oftentimes is preferred, and we are happy to present to you, that Atlas Linting engine is now capable of detecting statements that create or drop an index without using the CONCURRENTLY option.

Naming Conventions Policy

Keeping consistency when naming database schema resources is a widely common practice. Atlas now has an analyzer that can detect names that don't comply with a given naming policy and will warn you in such cases. You can configure both a global or a resource specific policy. Read on to learn how to configure this analyzer or have a look at the documentation.

Cloud Linting Configuration

In our last post, @a8m introduced the Community Preview for Atlas Cloud and how to connect a migration directory in your GitHub repository to Atlas Cloud with just a few clicks. As of then, the Atlas Cloud Linting reports that are added to your PR's used the default linting configuration. In this post, I will show you how to add configuration to the linting by making use of both the new analyzers I mentioned above.

When connecting a new migration directory, Atlas Cloud will scan the repository for an existing atlas.hcl file and propose to you to use that file on migration linting. If you don't have such a file, you can configure it manually as described in the next tab.

Enable the Analyzers

The Concurrent Index Analyzer will not report on creating or dropping indexes on tables that have been created in the same file. Therefore, lets ensure we have a table ready we can add an index to. Our first migration file can look something like this:

1.sql
CREATE TABLE users
(
id serial PRIMARY KEY,
email VARCHAR(50) UNIQUE NOT NULL,
first_name VARCHAR(50) NOT NULL
);

To configure the Atlas Cloud linter to warn about creating or dropping indexes without the CONCURRENTLY option and ensure that all our schema resources are named with lowercase letters only, use the following configuration:

note

The below configuration will also work with the latest release of the Atlas CLI.

atlas.hcl
lint {
concurrent_index {
error = true # block PR on violations instead of warning
}

naming {
error = true
match = "^[a-z]+$" # regex to match lowercase letters
message = "must be lowercase letters" # message to return if a violation is found
}
}

See It In Action

What is left to demonstrate is a migration file violating the above policies. Take the below example: the index name contains an underscore _, which is permitted by the naming analyzer and create the index non-concurrently.

2.sql
CREATE INDEX email_idx ON users (email);

After adding the above atlas.hcl configuration file and the new migration, create a Pull Request on GitHub and observe Atlas Cloud doing its magic wizardry:

Wonderful! As you can see, Atlas Cloud found the two issues with this simple statement. Since the Concurrent Index Analyzer is configured to error on violations, merging the PR is blocked (if you have this policy set on GitHub).

In addition to the comment on the Pull Request, you can find more detailed reporting in the Checks tab or have a look at the file annotations Atlas adds to your changes:

What next?

I sure hope the new analyzers will be useful to you. In the upcoming weeks, we will be rolling out several new major features that we have been working on lately, including schema drift detection, managed migration deployments, and much more. If any of these features sound interesting to you, please do not hesitate to contact us.

We would love to hear from you on our Discord server ❤️.

Announcing Atlas v0.10: Cloud Community Preview

· 4 min read
Ariel Mashraki
Building Atlas

It's been two months since the release of v0.9.0, so we figured it's about time to release a new version and share with you what we've accomplished so far, as well as what's to come in the upcoming weeks. Besides the many improvements and bug fixes in v0.10.0, we added two major features to Atlas that I want to share with you: schema loaders and the Community Preview of Atlas Cloud.

Schema Loaders

In our previous post, we discussed our motivation for developing an infrastructure to load desired states from external sources (not just SQL and HCL), and we highlighted the importance of schema loaders. Today, I'm happy to share that we've made significant progress on this front. We started by creating a schema loader for the Ent framework, and with the release of v0.10.0, Ent users can now use their ent/schema package as the desired state in all the different Atlas commands.

Using the new integration, users can compare an ent/schema package with any other state, apply it onto a database, generate migrations from it, and much more. Here are two examples:

atlas migrate diff create_users \
--dir "file://migrations" \
--to "ent://path/to/schema" \
--dev-url "sqlite://dev?mode=memory&_fk=1"

I'm really eager to see this initiative come to fruition because it has proven to work well for the Ent community. We are now ready to expand support for additional frameworks and languages. In the upcoming weeks, you can expect to see additional integrations, such as GORM, Sequelize, and more. With these new superpowers, users will be able to manage all of their database schemas using a single tool - Atlas!

Atlas Cloud Community Preview

We are also super thrilled to announce the Community Preview of Atlas Cloud! Atlas Cloud is a cloud-based service that provides teams with an end-to-end solution for managing database schema changes. As part of the Community Preview, we are offering a free "Community" plan for all users which you can use to manage up to 5 migration directories for your team or personal projects.

One important feature that was recently added to Atlas is the ability to connect remote migration directories stored in GitHub to Atlas Cloud. This new functionality empowers users to easily audit and view their migration history and get migration linting checks on their PRs, such as destructive or backwards incompatible changes detection.

Let's walk through a simple guide on how to set it up to a project with just a few clicks:

1. Login to atlasgo.cloud and create a new workspace (organization) for your projects:

2. Once created, go to /dirs/configure and connect your migration directory stored in GitHub to Atlas Cloud:

3. After connecting your directory, you'll see an extensive overview of your migration history and the schema it presents:

4. From this point on, every change made to the migration directory will be reflected in Atlas Cloud. But what about the changes themselves? Here's where the magic happens. Once a directory is connected, any pull request that modifies it will be automatically checked and reviewed by Atlas!

Let's create a sample migration change, open a pull request, and see it in action:

Wonderful! However, that's not all. There is another detailed and visualized report available in Atlas Cloud that has been specifically created for this CI run. Go to the migration directory page, click on the CI Runs button to check it out.

A big thanks to @giautm, @masseelch and @yonidavidson for building this feature for Atlas!

What next?

Well, this is just the beginning of Atlas Cloud! In the upcoming weeks, we will be rolling out several new major features that we have been working on lately, including schema drift detection, managed migration deployments, and much more. If any of these features sound interesting to you, please do not hesitate to contact us.

We would love to hear from you on our Discord server ❤️.